
© 2015 Carnegie Mellon University

Building Safe and Secure
Systems with AADL

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Julien Delange
AADL Meeting February 15

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
15 FEB 2015

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Building Safe and Secure Systems with AADL

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Delange /Julien

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

30

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0002054

3
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Agenda

Introduction to AADL

AADL modeling patterns for safety and security

AADL validation tools dedicated to security and safety

Demonstration

4
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Agenda

Introduction to AADL

AADL modeling patterns for safety and security

AADL validation tools dedicated to security and safety

Demonstration

5
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Introduction

Systems are becoming extremely software-reliant

Need to verify and validate requirements
• Requirements errors propagate through design
• Need to verify/validate requirements

Major integration and coding issues
• Incur massive re-engineering rework
• Could be removed by early analysis

6
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Architecture Analysis and Design Language

Model-Based Engineering with AADL
• Architecture Language Description standardized by SAE
• Description of Systems and Software Concerns
• Precise & unambiguous semantics
• Textual and Graphical Representation

Support for Model Analysis
• Verify system requirements (i.e. latency, safety)
• Check model integration before producing the implementation

7
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

AADL Model-Based Technology Overview

Security
Intrusion
Integrity

Confidentiality

Safety
& Reliability

MTBF
FMEA

Hazard
analysis

Real-time
Performance

Execution time/
Deadline

Deadlock/starvation

Latency

Resource
Consumption

Bandwidth
CPU time

Power
consumption

Data precision/
accuracy

Temporal
correctness

Confidence

Data
Quality

Architecture Model

Single Source Annotated Architecture Model
with Well-defined Semantics

Auto-generated
analytical models

8
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Understanding Actual Software Issues

High Fault Leakage Drives Major Increase in Rework Cost
Aircraft industry has reached limits of affordability

due ro exponential growth in SW size and complexity.

700Ai Requirements &
system Interaction errors 8~ /ate error

discovery at high
reworlc cost

................. ~
Major cost savings through rework avoidance

by early discovery and correction

A $1 Ok architecture phase correction saves $3M

Rework and certification is 70% of SW

2~%, 16%
Sx Unit

Tut

Integration
Tut

Where faults are introduced

Where faults are found

cost, and SW is 70% of system cost. The estimated nominal wst for fault removal

NIST Planning report 02.3, The Economic tmpacts oftnadequate
tnfraiD'ucAire fJr Software Teiting, May 2002. ·,.

D. Gi l in, Software Quality Au uranct: From Theory to
tmptementa6on, Pearson/Addison-Wesley (2004) Code

B.W. Boehm, Software Engineering Economics, Prentice Hall (1981)

Costly certification process leads to high
percentage of operational work around.

• Seftwara Engineering Institute I C~Melhl

9
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Use of AADL in Development Process

Software and Component Design
Define components requirements & interfaces
Early verification validation of components integration

Code Development
Auto-Generate Code (AADL, Simulink, SCADE)
Avoid traditional coding errors
Ensure correct translation of requirements

Unit & Integration Test
Automatic generation of tests from models
Reduce tests as system was validated earlier

10
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Agenda

Introduction to AADL

AADL modeling patterns for safety and security

AADL validation tools dedicated to security and safety

Demonstration

11
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Security Specifications

Leverage AADL properties for security level specification
Define security-specific values
Associate them with components and interfaces

Direct mapping to MILS Security Level concepts
MILS subjects to AADL runtime components
MILS objects to AADL interfaces

Objects (data produced)

Subjects

12
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Partitioning Policy (as in ARINC653 or MILS)

Partitions content and attributes
Use the regular process component
Include partition resources (tasks, data, etc.)

Time and Space Isolation
Time: Partition execution slots
Space: Association of partitions to memory segments

Partition 1

P1 P2

Partition 2

P1 P2

13
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Modeling a MILS architecture - example

Partition runtime

Separation kernel Physical Memory

Logical Memory Segments

Partition Content Tasks Software interfaces and data flows

Software (process) &
Hardware (cpu/memory)
associations/bindings

14
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Safety Policy with the Error-Model Annex V2

Standardized AADL annex dedicated for safety specification
Integrated with AADL-core
Extend/refine existing models

Support of Error Types Ontology
Characterize the error (i.e. divide by zero, late value)
Types hierarchy (i.e. late value is an extension of a timing error)

Error Propagations and Behavior Specification
Errors being propagated by AADL components
Behavior based on external interfaces or sub-components

15
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Error Propagation

Sensor Processing Actuator

Error Source
of ValueError

Sink for ValueError &
source for NoData

Error Sink
for NoData

Errors Propagations through Interfaces

ValueError NoData

Error Type Transformation

16
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Error Propagation Example

thread producer
f eatures I

I producer _prs

I consumer_producer::p

dat aou t : out data port charact er;
annex EMV2 { **

use types . errorlibrary;

e rror propagations
dat aou t : out propagation {Val ueError};

flows
f o : e rror source dat aou t {Val ueError};

end propagations ;

component e rror behavior
events

produ~_IO_oonsumJ consumer_prs

· I I consumer_producer::consumer.i

I dataout I ' I :::.. , I I
ro ' I \

thread c:u-surrer
features

IU

dat a1r : in data port C1aract er;
.:tnn P.X FMV? •: "'*

use t ypes errorlibrary;
~i. • · ' " . •• r . . 1 ~,

error propagations
:lat ai n : in propagation {Val ue::rror};

flows
f0 : erro r • ink dat ai n {Val ueErro·};

end propagations ;

co~pon ent error behavi or
transitions

I
I

I

Comput ationError error event;
transitions

t O : Operational ·[Comput ationError)·> Failed ;
propagations

t 0 Operaticnal ·f:latainfVal ueEr·or}l·> =ailed;
end component;

pO : Failed ·II·> dat aou t{Val ueError};
end component;

properties

**} J

prope rties
=MV2 : : :)~Vt! r ·i lv => A~4761 : :HaLl:::ln.Juuti i:IDDli~s l o Uoloi r· . Volu~Ern.J r ·

EMV2:: severity => ARP476l :: Hazardous applies t o dat aou t . Val ueError;
EMV2:: 0ccurrenceOi s t ri bution => [ProbabilityVal ue => 1.42e-5 ; Di s t r i bution => Poi sson;)

applies t o dat aou t . Val ueError;
EMV2:: likelihood => ARP476l :: Probabl e applies t o dat aou t . Val ueError;
EMV2:: hazards =>

([c ross ref e renee => "TBO" ;
f ailure => '' '' ;

))

phases => ("a ll") ;
desc ri ption => "Bad Val ue f rom the th read producer";
comment => "Must check the software tha t the va lue 1s not f aulty";

applies t o dat aou t . Val ueError · **},, ~
•

~ Software Engineering Institute - CarnegieMelbt

17
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Error behavior

States machines
Error-related transitions
Propagation rules
Use of error types

Composite behavior
Define system states according to its parts
ex: “I am failing if one of my component is failing”

Normal

Failed

Failure
(BadData)

Failed
(NoValue)

Recover

Subsystem 1
(Normal)

Subsystem 2
(Failing)

Subsystem 1
(Normal)

Subsystem 2
(Normal)

18
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Error behavior example

'
;
J

}

fii~IJL

_ m : Nfj1_ mmno.y.

t~1~_fi'III ~::~11110flmemOI)'_

' I

- _,,~pr~~;- (~h;ck_deos_comp liance (this))
prove (check_mils_compliance(this))

**} ;
~ annex EMV2 { **
~ use t ypes errorlibrary;

:pu , partl))
:pu , pa r t 2))

·tl;

·t 2;

use behavi or errorlibrary:: FailAndRecover;

composite error behavi or
s t at es

[partl . Failed)-> Failed;
[part 2. Failed)-> Failed;
[cpu . Failed)-> Failed;

end composite;
**} ;
end node . imp l;

• Software Engineering Institute I CarnefJieMellon

applies
applies

t o partl;
t o part 2;

19
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Agenda

Introduction to AADL

AADL modeling patterns for safety and security

AADL validation tools dedicated to security and safety

Demonstration

20
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Security Policy Verification

Component integration and composition
Partitions share the same level with their tasks
Partitions contain objects at the same level

Runtime issues
Each process is isolated in a partition
Partitions has at least one execution slot
Memory segments contain partitions at the same security level

Communication Policies
Communication share the same level
A shared device manages objects at the same level

21
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Specifying Validation Rules with RESOLUTE

Specify constraints on the AADL model
Check model consistency and properties
Validation at model level, avoid propagation of errors

List of rules and functions to check the model
Select elements to be verified
Filter them according to your constraints
Check components characteristics

Select process, connections &
virtual processor elements

Filter connected partitions
with their associated runtime

Check the runtime security
level is equal

22
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Generating Assurance Cases
Generate assurance-cases using RESOLUTE and AADL

Show constraints dependencies
Export to Certware

23
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Safety documentation Generation - FHA

Functional Hazard Assessment
List of all error sources of the system

24
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Safety documentation Generation - FTA

Fault-Tree Analysis
Bottom-up Approach
Show all contributor of a fault

25
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Safety documentation Generation – Fault Impact

Failure Mode and Effect Analysis
Propagation paths of failures
Highlight failure containment

26
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Automatic Code Generation

Automatically produce system implementation
Ensure implementation of system requirements
Avoid traditional mistakes of manual code generation

Low overhead (memory footprint and additional CPU time)
Less than 10% in memory and computation increase
Benefits outweigh the potential

Support for different runtime
ARINC653/MILS – focus on safety/security (DeOS, POK)
POSIX (RTEMS, Linux)

27
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Agenda

Introduction to AADL

AADL modeling patterns for safety and security

AADL validation tools dedicated to security and safety

Demonstration

28
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Conclusion

AADL flexible language to define safety and security concerns
Early verification, reducing tests and integration costs
Automatic code production, avoiding code and integration mistakes

Integration with existing development methods
Safety documentation (i.e. ARP4761)
Coding standards (i.e. ARINC653)

Bridge with Validation and Assurance Case tools
Check model consistency and composition
Auto-Generate assurance cases from models

29
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Links & Useful Information

AADL website – http://www.aadl.info

AADL wiki – http://www.aadl.info/wiki

ARINC653 AADL annex standard - http://standards.sae.org/as5506/2/

30
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Contact

Dr. Julien Delange
RTSS AP Initiative
Telephone: +1 412-268-9652
Email: jdelange@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.aadl.info
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

	Building Safe and Secure Systems with AADL
	Slide Number 2
	Agenda
	Agenda
	Introduction
	Architecture Analysis and Design Language
	AADL Model-Based Technology Overview
	Understanding Actual Software Issues
	Use of AADL in Development Process
	Agenda
	Security Specifications
	Partitioning Policy (as in ARINC653 or MILS)
	Modeling a MILS architecture - example
	Safety Policy with the Error-Model Annex V2
	Error Propagation
	Error Propagation Example
	Error behavior
	Error behavior example
	Agenda
	Security Policy Verification
	Specifying Validation Rules with RESOLUTE
	Generating Assurance Cases
	Safety documentation Generation - FHA
	Safety documentation Generation - FTA
	Safety documentation Generation – Fault Impact
	Automatic Code Generation
	Agenda
	Conclusion
	Links & Useful Information
	Contact

